Tag Archives: nuclear energy

The World Must Transition to 200% Renewable Energy Sources: no, that’s not a misprint

net-zero by 2050 was a joke, but nobody’s laughing

Attitude matters. Imagine that in the run-up to the 20xx Olympics your country declared: we will strive to not-lose and achieve net-zero gold medals!

OK maybe not the best metaphor but still – why aim to not trigger armageddon by… 2050?

  • It is international scientific consensus that, in order to prevent the worst climate damages, global net human-caused emissions of carbon dioxide (CO2) need to fall by about 45 percent from 2010 levels by 2030, reaching net zero around 2050. –

Once that lofty non-goal was agreed upon by governments across the globe, it quickly became apparent that virtually none of them were doing anywhere near what it would take to get to said uninspired non-goal.

The idea was (and still is) to drag and under-achieve as long as politically possible and then suddenly, in the final stretch, accelerate efforts (with resources controlled by future politicians) and reach net-zero. And then declare victory.

People want more than net-zero. People need more than net-zero. At the very least there has to be a better name, and a serious plan to make it actually happen.

You are going to hear a lot about minus-zero carbon soon. The reason is a good one. When the stakes are as high as the extinction of all life on earth, just getting to a tie score is not a good plan. So those who are in the trenches, working on solutions for global warming and reducing the carbon footprint, are search also for better ways to communicate what the goal is and what it means.

This, hopefully, can lead to a focus on a goal, or at least the articulation of a desire, that can inspire people to become highly active, even agitated, perhaps even alarmed, and begin the hard work and striving that it will take to get to a net-positive outcome for all of us.

And, who exactly decided that it would be a good idea to prolong the carbon carnival as long as possible in the first place? Carbon emitters and oil profiteers perhaps?

60 years of feet dragging, obfuscation and deliberate blocking of any solutions threatening the status quo have already come and gone.

Also, if energy is clean and abundant, why not use more? Energy is good, more energy use, if clean and sustainable, could be better. It can give us amazing things. Efficient use is good too, of course, but this is a mind-set issue. This is thought error or a thought liberation.

Minus-zero carbon x 100% (with 200% energy availability) is a much better goal and represents a thought liberating idea.

Perfection can’t be the enemy of good in the energy arena

Do we need architects and inventors, innovators and scientists, and massive amount of ammunition in the form of trillions of dollars in funding, from both public and private sources? Hell yes.

And must these magicians and Mavericks do amazing things that were believed impossible just a short while ago? Absolutely. Is this a ‘moon-shot’ to, not just save, but catapult humanity into a better future? You bet-ur-a%$ it is.

That means that the challenges of finding better tech, examples such as for soil regeneration, or more efficient battery storage, or for alternatives to rare earth metals, if they are too, um, rare need to be figured out and set into motion, fast. It means inventing and discovering tech that does not exist, that has not been tried or even sought after, why never sought? Because oil was cheap and available, so don’t stress it, Bub.

watch video

And, there are those out there, already today, that are thinking beyond net-zero in 2050. There are those that want more, that know that we need more. Those that understand that political inertia and corrupt vested interests are not the excuses we want written on our tombstones.

And why not look for half-full glasses or beliefs manifested into action? Why not aim for something that makes us want to get up, stand up, and make something possible that looks like hope and feels like success and winning?

Decentralized solutions are coming, in every part of life

The reality is that it is not only the world’s energy infrastructure that needs a total makeover. Financial inequality, political and economic systems are fragile and failing, regardless where.

There is a whiff of collapse that could turn into a whirlwind and then could derail any progress made, as we plunge into dark ages, even before factoring in the catastrophic climate challenges.

We need new, innovative ways to learn, to communicate, interact and collaborate. And these are emerging – if you don’t believe in crypto, web3 or any other new directions that many are seeing as alternatives to broken systems of the past, you at least have to acknowledge that actively looking for a better way, one that does represent a solution, is what is needed even as the current systems are failing us.

So if you don’t agree with the ideas for change and proposed ways to improve methods for human interaction and coexistence, come up with new ideas and put them forth, ok?, maybe we have to try and strive and stumble until a truly better way presents itself.

Give yourself and all you have into actions that will finally change the direction from one that spells doom, in this case continuing to burn carbon in insanely massive amounts while we fight, disagree and kill one another (war, etc.), to something new, something that at least could have a chance to win the peace.

Losing is unacceptable for-real this time. Winning isn’t everything, no sir, it’s the only thing. And starting on 04-22-2022 this net-zero BS needs to be sent to Mars, or perhaps Uranus.

Meanwhile here on earth we gotta get busy building the only thing that will prevent oblivion: a tiny taste of utopia that will grow from a seed into a raging forest of real, not fossilized, success.

Related:


Check out Lynxotic on YouTube

Find books on Music, Movies & Entertainment and many other topics at Bookshop.org

Lynxotic may receive a small commission based on any purchases made by following links from this page

Nuclear fusion hit a milestone thanks to better reactor walls – this engineering advance is building toward reactors of the future

Scientists at a laboratory in England have shattered the record for the amount of energy produced during a controlled, sustained fusion reaction. The production of 59 megajoules of energy over five seconds at the Joint European Torus – or JET – experiment in England has been called “a breakthrough” by some news outlets and caused quite a lot of excitement among physicists. But a common line regarding fusion electricity production is that it is “always 20 years away.”

photo collage / Lynxotic / adobe stock

We are a nuclear physicist and a nuclear engineer who study how to develop controlled nuclear fusion for the purpose of generating electricity.

The JET result demonstrates remarkable advancements in the understanding of the physics of fusion. But just as importantly, it shows that the new materials used to construct the inner walls of the fusion reactor worked as intended. The fact that the new wall construction performed as well as it did is what separates these results from previous milestones and elevates magnetic fusion from a dream toward a reality.

Fusing particles together

Nuclear fusion is the merging of two atomic nuclei into one compound nucleus. This nucleus then breaks apart and releases energy in the form of new atoms and particles that speed away from the reaction. A fusion power plant would capture the escaping particles and use their energy to generate electricity.

There are a few different ways to safely control fusion on Earth. Our research focuses on the approach taken by JET – using powerful magnetic fields to confine atoms until they are heated to a high enough temperature for them to fuse.

The fuel for current and future reactors are two different isotopes of hydrogen – meaning they have the one proton, but different numbers of neutrons – called deuterium and tritium. Normal hydrogen has one proton and no neutrons in its nucleus. Deuterium has one proton and one neutron while tritium has one proton and two neutrons.

For a fusion reaction to be successful, the fuel atoms must first become so hot that the electrons break free from the nuclei. This creates plasma – a collection of positive ions and electrons. You then need to keep heating that plasma until it reaches a temperature over 200 million degrees Fahrenheit (100 million Celsius). This plasma must then be kept in a confined space at high densities for a long enough period of time for the fuel atoms to collide into each other and fuse together.

To control fusion on Earth, researchers developed donut-shaped devices – called tokamaks – which use magnetic fields to contain the plasma. Magnetic field lines wrapping around the inside of the donut act like train tracks that the ions and electrons follow. By injecting energy into the plasma and heating it up, it is possible to accelerate the fuel particles to such high speeds that when they collide, instead of bouncing off each other, the fuel nuclei fuse together. When this happens, they release energy, primarily in the form of fast-moving neutrons.

During the fusion process, fuel particles gradually drift away from the hot, dense core and eventually collide with the inner wall of the fusion vessel. To prevent the walls from degrading due to these collisions – which in turn also contaminates the fusion fuel – reactors are built so that they channel the wayward particles toward a heavily armored chamber called the divertor. This pumps out the diverted particles and removes any excess heat to protect the tokamak.

The walls are important

A major limitation of past reactors has been the fact that divertors can’t survive the constant particle bombardment for more than a few seconds. To make fusion power work commercially, engineers need to build a tokamak vessel that will survive for years of use under the conditions necessary for fusion.

The divertor wall is the first consideration. Though the fuel particles are much cooler when they reach the divertor, they still have enough energy to knock atoms loose from the wall material of the divertor when they collide with it. Previously, JET’s divertor had a wall made of graphite, but graphite absorbs and traps too much of the fuel for practical use.

Around 2011, engineers at JET upgraded the divertor and inner vessel walls to tungsten. Tungsten was chosen in part because it has the highest melting point of any metal – an extremely important trait when the divertor is likely to experience heat loads nearly 10 times higher than the nose cone of a space shuttle reentering the Earth’s atmosphere. The inner vessel wall of the tokamak was upgraded from graphite to beryllium. Beryllium has excellent thermal and mechanical properties for a fusion reactor – it absorbs less fuel than graphite but can still withstand the high temperatures.

The energy JET produced was what made the headlines, but we’d argue it is in fact the use of the new wall materials which make the experiment truly impressive because future devices will need these more robust walls to operate at high power for even longer periods of time. JET is a successful proof of concept for how to build the next generation of fusion reactors.

The next fusion reactors

The JET tokamak is the largest and most advanced magnetic fusion reactor currently operating. But the next generation of reactors is already in the works, most notably the ITER experiment, set to begin operations in 2027. ITER – which is Latin for “the way” – is under construction in France and funded and directed by an international organization that includes the U.S.

ITER is going to put to use many of the material advances JET showed to be viable. But there are also some key differences. First, ITER is massive. The fusion chamber is 37 feet (11.4 meters) tall and 63 feet (19.4 meters) around – more than eight times larger than JET. In addition, ITER will utilize superconducting magnets capable of producing stronger magnetic fields for longer periods of time compared to JET’s magnets. With these upgrades, ITER is expected to smash JET’s fusion records – both for energy output and how long the reaction will run.

ITER is also expected to do something central to the idea of a fusion powerplant: produce more energy than it takes to heat the fuel. Models predict that ITER will produce around 500 megawatts of power continuously for 400 seconds while only consuming 50 MW of energy to heat the fuel. This mean the reactor produced 10 times more energy than it consumed – a huge improvement over JET, which required roughly three times more energy to heat the fuel than it produced for its recent 59 megajoule record.

JET’s recent record has shown that years of research in plasma physics and materials science have paid off and brought scientists to the doorstep of harnessing fusion for power generation. ITER will provide an enormous leap forward toward the goal of industrial scale fusion power plants.

[You’re smart and curious about the world. So are The Conversation’s authors and editors. You can read us daily by subscribing to our newsletter.]

David Donovan, Associate Professor of Nuclear Engineering, University of Tennessee and Livia Casali, Assistant Professor of Nuclear Engineering, University of Tennessee

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Articles:


Check out Lynxotic on YouTube

Find books on Music, Movies & Entertainment and many other topics at Bookshop.org

Lynxotic may receive a small commission based on any purchases made by following links from this page