Tag Archives: physics

A universe without mathematics is beyond the scope of our imagination

Mathematics is the language of the universe. (Shutterstock)

Peter Watson, Carleton University

Almost 400 years ago, in The Assayer, Galileo wrote: “Philosophy is written in this grand book, the universe … [But the book] is written in the language of mathematics.” He was much more than an astronomer, and this can almost be thought of as the first writing on the scientific method.

We do not know who first started applying mathematics to scientific study, but it is plausible that it was the Babylonians, who used it to discover the pattern underlying eclipses, nearly 3,000 years ago. But it took 2,500 years and the invention of calculus and Newtonian physics to explain the patterns. https://www.youtube.com/embed/Rx-5dCXx1SI?wmode=transparent&start=0 Science Magazine looks at Babylonian clay tablets that contained mathematical formulas that are a precursor to calculus.

Since then, probably every single major scientific discovery has used mathematics in some form, simply because it is far more powerful than any other human language. It is not surprising that this has led many people to claim that mathematics is much more: that the universe is created by a mathematician.

So could we imagine a universe in which mathematics does not work?

The language of mathematics

The Sapir-Whorf hypothesis asserts that you cannot discuss a concept unless you have the language to describe it.

In any science, and physics in particular, we need to describe concepts that do not map well on to any human language. One can describe an electron, but the moment we start asking questions like “What colour is it?” we start to realize the inadequacies of English.

The colour of an object depends on the wavelengths of light reflected by it, so an electron has no colour, or more accurately, all colours. The question itself is meaningless. But ask “How does an electron behave?” and the answer is, in principle, simple. In 1928, Paul A.M. Dirac wrote down an equation that describes the behaviour of an electron almost perfectly under all circumstances. This does not mean it is simple when we look at the details.

For example, an electron behaves as a tiny magnet. The magnitude can be calculated, but the calculation is horrendously complicated. Explaining an aurora, for example, requires us to understand orbital mechanics, magnetic fields and atomic physics, but at heart, these are just more mathematics.

But it is when we think of the individual that we realize that a human commitment to logical, mathematical thinking goes much deeper. The decision to overtake a slow-moving car does not involve the explicit integration of the equations of motion, but we certainly do it implicitly. A Tesla on autopilot will actually solve them explicitly.

When overtaking a car, a Tesla will explicitly calculate what a human driver processes implicitly. (Shutterstock)

Predicting chaos

So we really should not be surprised that mathematics is not just a language for describing the external world, but in many ways the only one. But just because something can be described mathematically does not mean it can be predicted.

One of the more remarkable discoveries of the last 50 years has been the discovery of “chaotic systems.” These can be apparently simple mathematical systems that cannot be solved precisely. It turns out that many systems are chaotic in this sense. Hurricane tracks in the Caribbean are superficially similar to eclipse tracks, but we cannot predict them precisely with all the power of modern computers.

However, we understand why: the equations that describe weather are intrinsically chaotic, so we can make accurate predictions in the short term, (about 24 hours), but these become increasingly unreliable over days. Similarly, quantum mechanics provides a theory where we know precisely what predictions cannot be made precisely. One can calculate the properties of an electron very accurately, but we cannot predict what an individual one will do.

Hurricanes are obviously intermittent events, and we cannot predict when one will happen in advance. But the mere fact that we cannot predict an event precisely does not mean we cannot describe it when it happens. We can even handle one-off events: it is generally accepted that the universe was created in the Big Bang and we have a remarkably precise theory of that.

Designing social systems

A whole host of social phenomena, from the stock market to revolutions, lack good predictive mathematics, but we can describe what has happened and to some extent construct model systems.

So how about personal relationships? Love may be blind, but relationships are certainly predictable. The vast majority of us choose partners inside our social class and linguistic group, so there is absolutely no doubt that is true in the statistical sense.

But it is also true in the local sense. A host of dating sites make their money by algorithms that at least make some pretence at matching you to your ideal mate. In a TED talk, futurist Amy Webb shows that mathematics actually works in dating algorithms.

A universe that could not be described mathematically would need to be fundamentally irrational and not merely unpredictable. Just because a theory is implausible does not mean we could not describe it mathematically.

But I do not think we live in that universe, and I suspect we cannot imagine a non-mathematical universe.

Peter Watson, Emeritus professor, Physics, Carleton University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Recent articles you may enjoy:


Check out Lynxotic on YouTube

Find books on Music, Movies & Entertainment and many other topics at Bookshop.org

Lynxotic may receive a small commission based on any purchases made by following links from this page

Nuclear fusion hit a milestone thanks to better reactor walls – this engineering advance is building toward reactors of the future

Scientists at a laboratory in England have shattered the record for the amount of energy produced during a controlled, sustained fusion reaction. The production of 59 megajoules of energy over five seconds at the Joint European Torus – or JET – experiment in England has been called “a breakthrough” by some news outlets and caused quite a lot of excitement among physicists. But a common line regarding fusion electricity production is that it is “always 20 years away.”

photo collage / Lynxotic / adobe stock

We are a nuclear physicist and a nuclear engineer who study how to develop controlled nuclear fusion for the purpose of generating electricity.

The JET result demonstrates remarkable advancements in the understanding of the physics of fusion. But just as importantly, it shows that the new materials used to construct the inner walls of the fusion reactor worked as intended. The fact that the new wall construction performed as well as it did is what separates these results from previous milestones and elevates magnetic fusion from a dream toward a reality.

Fusing particles together

Nuclear fusion is the merging of two atomic nuclei into one compound nucleus. This nucleus then breaks apart and releases energy in the form of new atoms and particles that speed away from the reaction. A fusion power plant would capture the escaping particles and use their energy to generate electricity.

There are a few different ways to safely control fusion on Earth. Our research focuses on the approach taken by JET – using powerful magnetic fields to confine atoms until they are heated to a high enough temperature for them to fuse.

The fuel for current and future reactors are two different isotopes of hydrogen – meaning they have the one proton, but different numbers of neutrons – called deuterium and tritium. Normal hydrogen has one proton and no neutrons in its nucleus. Deuterium has one proton and one neutron while tritium has one proton and two neutrons.

For a fusion reaction to be successful, the fuel atoms must first become so hot that the electrons break free from the nuclei. This creates plasma – a collection of positive ions and electrons. You then need to keep heating that plasma until it reaches a temperature over 200 million degrees Fahrenheit (100 million Celsius). This plasma must then be kept in a confined space at high densities for a long enough period of time for the fuel atoms to collide into each other and fuse together.

To control fusion on Earth, researchers developed donut-shaped devices – called tokamaks – which use magnetic fields to contain the plasma. Magnetic field lines wrapping around the inside of the donut act like train tracks that the ions and electrons follow. By injecting energy into the plasma and heating it up, it is possible to accelerate the fuel particles to such high speeds that when they collide, instead of bouncing off each other, the fuel nuclei fuse together. When this happens, they release energy, primarily in the form of fast-moving neutrons.

During the fusion process, fuel particles gradually drift away from the hot, dense core and eventually collide with the inner wall of the fusion vessel. To prevent the walls from degrading due to these collisions – which in turn also contaminates the fusion fuel – reactors are built so that they channel the wayward particles toward a heavily armored chamber called the divertor. This pumps out the diverted particles and removes any excess heat to protect the tokamak.

The walls are important

A major limitation of past reactors has been the fact that divertors can’t survive the constant particle bombardment for more than a few seconds. To make fusion power work commercially, engineers need to build a tokamak vessel that will survive for years of use under the conditions necessary for fusion.

The divertor wall is the first consideration. Though the fuel particles are much cooler when they reach the divertor, they still have enough energy to knock atoms loose from the wall material of the divertor when they collide with it. Previously, JET’s divertor had a wall made of graphite, but graphite absorbs and traps too much of the fuel for practical use.

Around 2011, engineers at JET upgraded the divertor and inner vessel walls to tungsten. Tungsten was chosen in part because it has the highest melting point of any metal – an extremely important trait when the divertor is likely to experience heat loads nearly 10 times higher than the nose cone of a space shuttle reentering the Earth’s atmosphere. The inner vessel wall of the tokamak was upgraded from graphite to beryllium. Beryllium has excellent thermal and mechanical properties for a fusion reactor – it absorbs less fuel than graphite but can still withstand the high temperatures.

The energy JET produced was what made the headlines, but we’d argue it is in fact the use of the new wall materials which make the experiment truly impressive because future devices will need these more robust walls to operate at high power for even longer periods of time. JET is a successful proof of concept for how to build the next generation of fusion reactors.

The next fusion reactors

The JET tokamak is the largest and most advanced magnetic fusion reactor currently operating. But the next generation of reactors is already in the works, most notably the ITER experiment, set to begin operations in 2027. ITER – which is Latin for “the way” – is under construction in France and funded and directed by an international organization that includes the U.S.

ITER is going to put to use many of the material advances JET showed to be viable. But there are also some key differences. First, ITER is massive. The fusion chamber is 37 feet (11.4 meters) tall and 63 feet (19.4 meters) around – more than eight times larger than JET. In addition, ITER will utilize superconducting magnets capable of producing stronger magnetic fields for longer periods of time compared to JET’s magnets. With these upgrades, ITER is expected to smash JET’s fusion records – both for energy output and how long the reaction will run.

ITER is also expected to do something central to the idea of a fusion powerplant: produce more energy than it takes to heat the fuel. Models predict that ITER will produce around 500 megawatts of power continuously for 400 seconds while only consuming 50 MW of energy to heat the fuel. This mean the reactor produced 10 times more energy than it consumed – a huge improvement over JET, which required roughly three times more energy to heat the fuel than it produced for its recent 59 megajoule record.

JET’s recent record has shown that years of research in plasma physics and materials science have paid off and brought scientists to the doorstep of harnessing fusion for power generation. ITER will provide an enormous leap forward toward the goal of industrial scale fusion power plants.

[You’re smart and curious about the world. So are The Conversation’s authors and editors. You can read us daily by subscribing to our newsletter.]

David Donovan, Associate Professor of Nuclear Engineering, University of Tennessee and Livia Casali, Assistant Professor of Nuclear Engineering, University of Tennessee

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Articles:


Check out Lynxotic on YouTube

Find books on Music, Movies & Entertainment and many other topics at Bookshop.org

Lynxotic may receive a small commission based on any purchases made by following links from this page

Scientists, here’s how to use less plastic

Above: Photo / Unsplash

Meet the researchers making science more sustainable.

The lab is quietly bustling with scientists intent on their work. One gestures to an item on her bench – a yellow container, about the size of a novel. It’s almost full to the brim with used plastic pipette tips – the disposable attachments that stop pipettes being cross-contaminated. She stares down at it, despondently. “And this is just from today.”

We’re at the Francis Crick Institute, a towering biomedical research facility in the heart of London. The scientist in question is Marta Rodriguez Martinez, a Postdoctoral Training Fellow. Every day in her lab, pipette tips, petri dishes, bottles and more are used and discarded. The scale of the waste is immense – research by the University of Exeter estimates that labs worldwide generate 5.5 million tonnes of plastic waste each year.

Newsletter: 

Alongside her research, Rodriguez Martinez doubles as a sustainability rep, tirelessly working to reduce the plastic waste her lab produces. The Crick’s sustainability team consult her about the unique behaviours of scientists. In return, she encourages colleagues to stop using unnecessary plastic and teaches them about sustainable alternatives.

It’s a difficult task, but one she feels passionate about. “We have in our heads that plastic is a one-use material, but it is not. Plastic can be autoclaved, it can be washed. Most plastics we use in the lab could be re-used as efficiently as glass.”

The Crick is taking behaviour change seriously. Alongside reps like Rodriguez Martinez, it offers sustainability workshops and waste training to employees. A pipette-tip audit is underway, which will show which products come with the lowest excess plastic. It’s also developing an interactive dashboard for teams to see how their waste compares to other labs’.

But behaviour change is only the beginning. Rodrigo Ponce-Ortuño oversees the Crick’s contract with an eco-friendly waste-management company. He points out that the journey of plastic lab equipment stretches far beyond its short service on the workbench.

Take media bottles – the plastic containers that hold nutrients to grow cells and bacteria. “It’s just glucose that goes into the bottles,” Ponce-Ortuño explains. The liquid is non-hazardous, but in his experience, recycling companies are wary of the scientific jargon on the labelling.

“If it just said sugar, it would be fine,” he says. Instead, many companies reject the waste because they don’t understand the chemistry. But, by using contractors with the right expertise, the Crick now sends all its media bottles for recycling.

For Rodriguez Martinez, this is a milestone. “I use maybe four media bottles a week, and there are 1,200 scientists here. That we can rinse them and have a contractor recycle them is a big success.”

This tactic – of building companies’ confidence in handling lab equipment – has led to other successes, too. Cooling gel packs, polystyrene boxes and the bulky pallets used to transport products are all collected for re-use. Boxes for pipette tips are also collected – after they’ve been stacked and re-used in the labs themselves.

In fact, the Crick’s labs send no waste at all to landfill. Hazardous waste is safely incinerated, but anything else that can’t be recycled goes through a process called energy-from-waste, where electricity, heat or fuel is harvested from the material as it’s disposed of.

And they’re just as keen to reduce the amount of plastic coming in. The institute recently held a green procurement fair, where suppliers had to meet a set of sustainability criteria to attend. “Normally when you buy a product, you look at the quality and the price,” says Rodriguez Martinez. “We want to add sustainability to that equation.”

The team know that change won’t happen overnight. They need to win people over with practical measures to reduce plastics – without reducing the quality of science. So the institute is discussing best practice with other laboratories, to grow the movement for low-plastic research.

“We’re trying to educate people into a more sustainable science,” says Rodriguez Martinez.

Wellcome, which publishes Mosaic, is one of the six founding partners of the Francis Crick Institute.

The lab is quietly bustling with scientists intent on their work. One gestures to an item on her bench – a yellow container, about the size of a novel. It’s almost full to the brim with used plastic pipette tips – the disposable attachments that stop pipettes being cross-contaminated. She stares down at it, despondently. “And this is just from today.”

We’re at the Francis Crick Institute, a towering biomedical research facility in the heart of London. The scientist in question is Marta Rodriguez Martinez, a Postdoctoral Training Fellow. Every day in her lab, pipette tips, petri dishes, bottles and more are used and discarded. The scale of the waste is immense – research by the University of Exeter estimates that labs worldwide generate 5.5 million tonnes of plastic waste each year. Newsletter: 

Alongside her research, Rodriguez Martinez doubles as a sustainability rep, tirelessly working to reduce the plastic waste her lab produces. The Crick’s sustainability team consult her about the unique behaviours of scientists. In return, she encourages colleagues to stop using unnecessary plastic and teaches them about sustainable alternatives.

It’s a difficult task, but one she feels passionate about. “We have in our heads that plastic is a one-use material, but it is not. Plastic can be autoclaved, it can be washed. Most plastics we use in the lab could be re-used as efficiently as glass.”

The Crick is taking behaviour change seriously. Alongside reps like Rodriguez Martinez, it offers sustainability workshops and waste training to employees. A pipette-tip audit is underway, which will show which products come with the lowest excess plastic. It’s also developing an interactive dashboard for teams to see how their waste compares to other labs’.

But behaviour change is only the beginning. Rodrigo Ponce-Ortuño oversees the Crick’s contract with an eco-friendly waste-management company. He points out that the journey of plastic lab equipment stretches far beyond its short service on the workbench.

Take media bottles – the plastic containers that hold nutrients to grow cells and bacteria. “It’s just glucose that goes into the bottles,” Ponce-Ortuño explains. The liquid is non-hazardous, but in his experience, recycling companies are wary of the scientific jargon on the labelling.

“If it just said sugar, it would be fine,” he says. Instead, many companies reject the waste because they don’t understand the chemistry. But, by using contractors with the right expertise, the Crick now sends all its media bottles for recycling.

For Rodriguez Martinez, this is a milestone. “I use maybe four media bottles a week, and there are 1,200 scientists here. That we can rinse them and have a contractor recycle them is a big success.”

This tactic – of building companies’ confidence in handling lab equipment – has led to other successes, too. Cooling gel packs, polystyrene boxes and the bulky pallets used to transport products are all collected for re-use. Boxes for pipette tips are also collected – after they’ve been stacked and re-used in the labs themselves.

In fact, the Crick’s labs send no waste at all to landfill. Hazardous waste is safely incinerated, but anything else that can’t be recycled goes through a process called energy-from-waste, where electricity, heat or fuel is harvested from the material as it’s disposed of.

And they’re just as keen to reduce the amount of plastic coming in. The institute recently held a green procurement fair, where suppliers had to meet a set of sustainability criteria to attend. “Normally when you buy a product, you look at the quality and the price,” says Rodriguez Martinez. “We want to add sustainability to that equation.”

The team know that change won’t happen overnight. They need to win people over with practical measures to reduce plastics – without reducing the quality of science. So the institute is discussing best practice with other laboratories, to grow the movement for low-plastic research.

“We’re trying to educate people into a more sustainable science,” says Rodriguez Martinez.

Wellcome, which publishes Mosaic, is one of the six founding partners of the Francis Crick Institute.

This article first appeared on Mosaic and is republished here under a Creative Commons licence (CC BY 4.0).

Related Articles:


Check out Lynxotic on YouTube

Find books on Music, Movies & Entertainment and many other topics at our sister site: Cherrybooks on Bookshop.org

Enjoy Lynxotic at Apple News on your iPhone, iPad or Mac.

Lynxotic may receive a small commission based on any purchases made by following links from this page

How Apple Created the Tech Universe and it Finally Makes Sense

Above: Photo Collage / Lynxotic

The Origin of Everything is Shrouded in Mystery – looking at Apple’s history yields many clues, however…

PART I of a 3 PART SERIES:

Given the sheer size, breadth and power of the various “Tech Giants” as they have become known, many, if not most would be skeptical if an assertion were put forth that all of them were a direct product or outgrowth of Apple.

Click to see “Steve Jobs
and help independent bookstores.
Also available on Amazon.

Although there is almost constant complaining that Apple is not the innovator it once was, or that they sell overpriced and overrated products, with more marketing than substance, tracing back through the history of tech a very different story emerges. Further, all the way to the present a pattern holds true that traces all big tech back to Apple in a direct route from at least 1984 or earlier.

The whole story is long and somewhat hidden; and it diverges from the accepted notions of how the massive empires of tech came about. In the end it is almost impossible not to see the behemoths now known as Microsoft, Google, Facebook and others as little more than incidental occurrences, spawned the wake of Apple’s growth and innovation.

Apple is an entirely different company from what it seems from the point of view of the masses & the media. For example, just as now we have Biden vs. Trump we once had Jobs vs. Gates. You can decide which is which. Perhaps today it seems like a stretch, but up until around 1998 the two were considered opposites and as compatible as oil vs. water.

https://video.twimg.com/ext_tw_video/1326262361900998657/pu/vid/1280x592/4NJDOGbF7eYtHJBu.mp4?tag=10

Above: vdieo Clip from the “One More Thing 2020 Event and Video Still Photo Collage / Lynxotic

There have always been a huge number of people who are offended by the high-price high-quality ethos that Steve Jobs created and that the company carries forward to this day. 

Steve Jobs Steve Wozniak with the Apple 1 prototype

Much like Tesla owners are heckled by Toyota, Ford and Chevy pick-up truck owners, Apple has always had an army of detractors. And while for many years it was Windows / PC users now it is Android and Samsung. But if you set aside the Apple-derangement Syndrome, sister affliction to the fabled “Reality Distortion Field” there are some fascinating theories that could be put forth showing that Apple and Steve Jobs are the ultimate source of all tech since the Garden of Eden, or at least the 70s.

[Readers note: there are many accepted truths and fabled stories that will be addressed in this article. These are, at times considered “fact” and at other times questioned openly. If it bothers you when either of those choices are made to suit the narrative, you may, of course, opt-out at any time. All attempts have been made to remain true to historical fact, but no claims or guarantees are made of perfection.]

In The Beginning there was… XEROX?

In the beginning there was Xerox Parc. From that private think-tank of a copy-machine company emerged two incredible discoveries; the Graphical-User-Interface (GUI) and the Mouse (mouse). In the fable Steve Jobs is invited to visit in late 1979, to gather knowledge from the computer scientists and R&D gurus and later decides to “steal” everything he sees. Xerox, on the other hand, continues to believe that copy machines are the real future.

Click to see “iWoz
and help independent bookstores.
Also available on Amazon.

This fable / anecdote is often used to illustrate that Steve Jobs and Apple deserve no credit for the ultimate ubiquity of the software that emerged from the GUI concept and, the mouse that came about cause of the… mouse. It is also said, or at least implied, that Microsoft was fully justified in stealing anything and everything they could from Apple software innovations because “Steve did it first to Xerox”. These kinds of rationalizations are the reason why Apple is still, to this day, not recognized as the source for all tech in the universe. 

The more accurate take on this origin story is that Steve Jobs was the first to recognize the ultimate importance of the GUI and mouse combo (after all Xerox never made any real commercially viable attempt to make and market the discoveries from its own R&D) and that the future of the tech world would be built on the bedrock of these early innovations. 

“…In fact, turning expensive, hard-to-use, precision instruments into cheap, mass-producible, and reliable commercial products requires its own ingenuity and creativity. This marketplace intelligence is different from, but not inferior to, the intelligence of the laboratory; it just gets far less attention by journalists and historians. In the case of the relationship between the work at PARC and the development of the Macintosh, this blindness leads us to underestimate the originality of Apple’s own work, and the differences between the Alto and Macintosh. “

Alex Soojung-Kim Pang, author of “Making the Macintosh

Further, at the time Bill Gates was madly in love with the wonders of MS-Dos and in particular the money he could bank in licensing it to IBM and all bidders… It was only years later in 1985 when he famously decided to steal the GUI_ Mouse based system software apple was using, in spite of his promises to refrain from stealing when he was shown the secrets during his fabled meeting with Steve Jobs to discuss word and excel, early versions of which were already on the Macintosh. Hence the echos of “Steve did it first to Xerox” became the rallying cry for all those that seemed to justify the direct theft of Macintosh OS to create the clunky-named system called “Windows”. 

This story carried on throughout the 80s and 90s and, all the while, a 1988 lawsuit was pending resolution, which has at its center the accusation, by Apple, that Windows 1, released in November 1985, was directly copied, a.k.a. inspired by the Macintosh OS. In the end, in another famous fabled incident, the suit was settled out of court in 1997, by then obscenely rich Bill Gates, for $150 million, thus rescuing Apple from almost certain Bankruptcy.

Moral of the story? Windows, PC’s and everything Microsoft ever became, can be directly traced back to Apple.  This is the most obvious of the various lines of creative attribution leading back to Apple and Steve Jobs.

The next saga: Google’s connection and the debt owed to Anti-trust and Apple, will be more subtle but all the more timely. Timely as in right now this minute. Stay tuned for Volume II of “How Apple Created the Entire Tech Universe and it Finally Makes Sense”


Check out all our Apple Coverage

Subscribe to our newsletter for all the latest updates directly to your inBox.

Find books on Big TechSustainable EnergyEconomics and many other topics at our sister site: Cherrybooks on Bookshop.org

Enjoy Lynxotic at Apple News on your iPhone, iPad or Mac.

Lynxotic may receive a small commission based on any purchases made by following links from this page.